Research in the Nocera Group


Solar Energy Conversion


Solar energy needs to be stored because it is diurnal and also subject to intermittency arising from variable atmospheric conditions. Accordingly, a 24/7 plentiful and large scale solar energy supply will only be possible if an inexpensive storage mechanism is developed. We concentrate on using solar energy to drive bond rearrangements to produce fuels. Of primary interest to us in recent years has been the production of solar fuels from HX and $$\ce{H2O}$$.

Proton-Coupled Electron Transfer


We have pioneered the study of proton-coupled electron transfer (PCET) by developing methods to discern how protons couple to electrons. These studies shed light on basic bioenergy and chemical energy conversion mechanisms.

Optical Sensors for Profiling Tumor Metabolism


In addition to controlling energy flow in molecules and materials to perform useful reactions in energy, chemistry and biology, we also control the flow of energy to be sensitive to the biological, chemical, and physical world around us. The power of this control is exemplified in our development of new methods to measure turbulent flow and nanocrystal (NC)-based optical sensors for the metabolic profiling of growing tumors, which in turn provides guidance in the development of new cancer treatment therapies.

Spin Frustration and the Quantum Spin Liquid


We create two-dimensional spin lattices that are highly frustrated, opening the way for new discovery of highly correlated spin systems. We synthesized the first quantum spin liquid from S = 1/2 spins on a kagomé lattice, a long sought holy grail in condensed matter physics.
Valid XHTML :: Valid CSS: :: Powered by WikkaWiki