Energy Catalysis

Reversible CO2 Capture and On-Demand Release by an Acidity-Matched Organic Photoswitch. Abdulrahman M. Alfaraidi, Bryan Kudisch, Nina Ni, Jayden Thomas, Thomas Y. George, Khashayar Rajabimoghadam, Haihui Joy Jiang, Daniel G. Nocera, Michael J. Aziz and Richard Y. Liu, J. Am. Chem. Soc. 2024, 145, 26720–26727.

Oxidation Chemistry of Bicarbonate and Peroxycarbonate: Implications for Carbonate Management in Energy Storage. Zhifei Yan, Kristopher G. Reynolds, Rui Sun, Yongjin Shin, Agnes E. Thorarinsdottir, Bryan Kudisch, Giulia Galli and Daniel G. Nocera, J. Am. Chem. Soc. 2023, 145, 22213–22221.

Enhanced Activity for the Oxygen Reduction Reaction in Microporous Water. Agnes E. Thorarinsdottir, Daniel P. Erdosy, Cyrille Costentin, Jarad A. Mason and Daniel G. Nocera, Nat. Catal. 2023, 6, 425434.

Generation of Pure Oxygen from Briny Water by Binary Catalysis. Thomas P. Keane,  Samuel S. Veroneau, Alaina C. Hartnett and Daniel G. Nocera, J. Am. Chem. Soc. 2023, 145, 4989–4993.

Electrolyte-Induced Restructuring of Acid-Stable Oxygen Evolution Catalysts. Samuel S. Veroneau, Agnes E. Thorarinsdottir, Daniel M. Loh, Alaina C. Hartnett, Thomas P. Keane and Daniel G. Nocera, Chem. Mater. 2023, 35, 3218–3225.

Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. Daniel G. Nocera, J. Am. Chem. Soc. 2022, 144, 1069–1081.

Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Metal-Air Batteries. Matthew Nava, Agnes E. Thorarinsdottir, Nazario López Cruz, Christopher C. Cummins and Daniel G. Nocera, Chem Mater. 2022, 34,3883–3892.

Self-Healing Oxygen Evolution Catalysts. Agnes E. Thorarinsdottir, Samuel S. Veroneau and Daniel G. Nocera, Nat. Commun. 2022, 13, 1243.

Direct Seawater Splitting by Forward Osmosis Coupled to Water Splitting. Samuel S. Veroneau, Alaina C. Hartnett, Agnes E. Thorarinsdottir and Daniel G. Nocera, ACS Appl. Energy Mater. 2022, 5, 1403–1408.

p-Block Metal Oxide Noninnocence in the Oxygen Evolution Reaction in Acid: The Case of Bismuth Oxide. Agnes E. Thorarinsdottir, Samuel S. Veroneau and Daniel G. Nocera, Chem. Mater. 2022, 34, 826–835.

Synthesis, Characterization, and Hydrogen Evolution Activity of Metallo-meso-(4-fluoro-2,6-dimethylphenyl)porphyrin Derivatives. Pallas Chou, Lauren Kim, Sammer M. Marzouk, Rui Sun, Alaina C. Hartnett, Dilek K. Dogutan, Shao-Liang Zheng and Daniel G. Nocera, ACS Omega 2022, 7, 8988–8994.

Continuous Electrochemical Water Splitting from Natural Water Sources via Forward Osmosis. Samuel S. Veroneau and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2024855118.

Cascade Electrochemical Reduction of Carbon Dioxide with Bimetallic Nanowire and Foam Electrodes. Benjamin A. Zhang and Daniel G. Nocera, ChemElectroChem 2021, 8, 1918–1924.

Detection of High-Valent Iron Species in Alloyed Oxidic Cobaltates for Catalysing the Oxygen Evolution Reaction. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen and Daniel G. Nocera, Nature Commun. 2021, 12, 4218.

Impactful Role of Co-Catalysts on Molecular Electrocatalytic Hydrogen Production. Charles G. Margarit, Naomi G. Asimow, Agnes E. Thorarinsdottir, Cyrille Costentin and Daniel G. Nocera, ACS Catal. 2021, 11, 4561–4567.

Influence of the Proton Relay Spacer on Hydrogen Electrocatalysis by Cobalt Hangman Porphyrins. Manolis M. Roubelakis, D. Kwabena Bediako, Dilek K. Dogutan and Daniel G. Nocera, J. Porph. Phthalocyanines 2021, 25, 714–723.

Energy Catalysis Needs Ligands with High Oxidative Stability. Agnes E. Thorarinsdottir and Daniel G. Nocera, Chem. Catal. 2021, 1, 32–43.

Lithium Superoxide Encapsulated in a Benzoquinone Anion Matrix. Matthew Nava, Shiyu Zhang, Katherine S. Pastore, Xiaowen Feng, Kyle M. Lancaster, Daniel G. Nocera and Christopher C. Cummins, Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2019392118.

Tertiary Amine-Assisted Electroreduction of Carbon Dioxide to Formate Catalyzed by Iron Tetraphenylporphyrin. Charles G. Margarit, Naomi G. Asimow, Cyrille Costentin and Daniel G. Nocera, ACS Energy Lett. 2020, 5, 72–78.

Template-Stabilized Oxidic Nickel Oxygen Evolution Catalysts. Nancy Li, Thomas P. Keane, Samuel S. Veroneau Ryan G. Hadt, Dugan Hayes, Lin X. Chen and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 16187–16192.

Driving Force Dependence of Inner-Sphere Electron Transfer for the Reduction of CO2 on a Gold Electrode. Benjamin A. Zhang, Cyrille Costentin, and Daniel G. Nocera, J. Chem. Phys. 2020, 153, 094701.

Role of Electrolyte Composition on the Acid Stability of Mixed-Metal Oxygen Evolution Catalysts. Nancy Li, Thomas P. Keane, Samuel S. Veroneau and Daniel G. Nocera, Chem. Commun. 2020, 56, 10477–10480.

Dual-Phase Molecular-Like Charge Transport in Nanoporous Transition Metal Oxides. Cyrille Costentin and Daniel G. Nocera, J. Phys. Chem. C 2019, 123, 1966–1973.

Proton-Electron Conductivity in Thin Films of a Cobalt-Oxygen Evolving Catalyst. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin Simon J. L. Billinge and Daniel G. Nocera, ACS Appl. Energy Mater. 2019, 2, 3–12.

Carbon Dioxide Reduction by Iron Hangman Porphyrins. Charles G. Margarit, Christoph Schnedermann, Naomi G. Asimow and Daniel G. Nocera, Organometallics 2019, 38, 1219–1223.

Oxidative Degradation of Multi-Carbon Substrates by an Oxidic Cobalt Phosphate Catalyst. Thomas P. Keane, Casey N. Brodsky and Daniel G. Nocera, Organometallics 2019, 38, 1200–1203.

Ligand Non-Innocence in Nickel Porphyrins: Nickel Isobacteriochlorin Formation Under Hydrogen Evolution Conditions. Andrew G. Maher, Mengran Liu and Daniel G. Nocera, Inorg. Chem. 2019, 58, 7958-7968.

Interplay of Homogeneous Reactions, Mass Transport and Kinetics in Determining Selectivity of the Reduction of CO2 on Gold Electrode. Benjamin A. Zhang, Tuncay Ozel, Joseph S. Elias, Cyrille Costentin and Daniel G. Nocera, ACS Cent. Sci. 2019, 5, 1097–1105.

On the Conversion Efficiency of CO2 Electroreduction on Gold. Benjamin A. Zhang, Cyrille Costentin and Daniel G. Nocera, Joule 2019, 7, P1565–P1568.

Selective Production of Oxygen from Seawater by Oxidic Metallate Catalysts. Thomas P. Keane and Daniel G. Nocera, ACS Omega 2019, 4, 12860–12864.

Electrochemical Trapping of Metastable Mn3+ Ions for Activation of MnO2 Oxygen Evolution Catalysts. Zamyla Morgan Chan, Daniil A. Kitchaev, Johanna Nelson Weker, Christoph Schnedermann, Kipil Lim, Gerbrand Ceder, William Tumas, Michael F. Toney and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E5261–E5268.          

Oxygen Activation at a Dicobalt Center of a Dipyridylethane Naphthyridine Complex. Casey N. Brodsky, Guillaume Passard, Andrew M. Ullman, David E. Jaramillo, Eric D. Bloch, Michael Huynh, Cyrille Costentin and Daniel G. Nocera, Dalton Trans. 2018, 47, 11903–11908.

Oxygen Reduction Reaction Promoted by Manganese Porphyrins. Guillaume Passard, Dilek K. Dogutan, Mengting Qiu, Cyrille Costentin and Daniel G. Nocera, ACS Catal. 2018, 8, 8671–8679.

Direct Electrochemical P(V) to P(III) Reduction of Phosphine Oxide Facilitated by Triaryl Borates. Joseph S. Elias, Cyrille Costentin and Daniel G. Nocera, J. Am. Chem. Soc. 2018, 140, 13711–13718.

Influence of Iron Doping on Tetravalent Nickel Content in Catalytic Oxygen Evolving Films. Nancy Li, D. Kwabena Bediako, Ryan G. Hadt, Dugan Hayes, Thomas J. Kempa, Felix von Cube, David C. Bell, Lin X. Chen and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1486–1491.

Design of Template-Stabilized Active and Earth-Abundant Oxygen Evolution Catalysts in Acid. Michael Huynh, Tuncay Ozel, Chong Liu, Eric C. Lau and Daniel G. Nocera Chem. Sci. 2017, 8, 4779–4794.

In situ Characterization of Cofacial Co(IV) Centers in a Co4O4 Cubane: Modeling the High-Valent Active Site in Oxygen Evolving Catalysts. Casey N. Brodsky, Ryan G. Hadt, Dugan Hayes, Benjamin J. Reinhart, Nancy Li, Lin X. Chen and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3855–3860.

Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt Chlorin. Andrew G. Maher, Guillaume Passard, Dilek K. Dogutan, Robert L. Halbach, Bryce L. Anderson, Christopher J. Gagliardi, Masahiko Taniguchi, Jonathan S. Lindsey and Daniel G. Nocera, ACS Catal. 2017, 7, 3597–3606.

Multielectron, Multisubstrate Molecular Catalysis of Electrochemical Reactions: Formal Kinetic Analysis in the Total Catalysis Regime. Cyrille Costentin, Daniel G. Nocera and Casey N. Brodsky, Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 11303–11308.

On the Incompatibility of Lithium-O2 Battery Technology with CO­2. Shiyu Zhang, Matthew J. Nava, Gary K. Chow, Nazario Lopez, Gang Wu, David R. Britt, Daniel G. Nocera and Christopher C. Cummins, Chem. Sci. 2017, 8, 6117–6122.

Self-Healing Catalysis in Water. Cyrille Costentin and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 13380–13384.

Catalytic Oxygen Evolution by Cobalt Oxido Thin Films. D. Kwabena Bediako, Andrew M. Ullman and Daniel G. Nocera, Top. Curr. Chem. 2016, 371, 173–214.

Nickel Phlorin Intermediate Formed by Proton-Coupled Electron Transfer in Hydrogen Evolution Mechanism. Brian H. Solis, Andrew G. Maher, Dilek K. Dogutan, Daniel G. Nocera and Sharon Hammes-Schiffer, Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 485–492.

Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential. Guillaume Passard, Andrew M. Ullman, Casey N. Brodsky and Daniel G. Nocera, J. Am. Chem. Soc. 2016, 138, 2925–2928.

Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng and Daniel G. Nocera, J. Am. Chem. Soc. 2016, 138, 4229–4236.           

X-​ray Spectroscopic Characterization of Co(IV) and Metal-​Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-​Valent States Relevant to the Oxygen Evolution Reaction. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton Daniel G. Nocera and Lin X. Chen, J. Am. Chem. Soc. 2016, 138, 11017–11030.      

Nature of Activated Manganese Oxide for Oxygen Evolution. Michael Huynh, Chenyang Shi, Simon J. L. Billinge and Daniel G. Nocera, J. Am. Chem. Soc. 2015, 137, 14887–14904.

Templated Assembly of Photoswitches Significantly Increases the Energy-Storage Capacity of Solar Thermal Fuel. Timothy J. Kucharski. Nicola Ferralis, Alexie M. Kolpak, Jennie O. Zheng, Daniel G. Nocera and Jeffrey C. Grossman, Nature Chem. 2014, 6, 441–447.

Nucleation and Growth Mechanisms of an Electrodeposited Manganese Oxide Oxygen Evolution Catalyst. Michael Huynh, D. Kwabena Bediako, Yi Liu and Daniel G. Nocera, J. Phys. Chem. C 2014, 118, 17142–17152.

A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Michael Huynh, D. Kwabena Bediako and Daniel G. Nocera, J. Am. Chem. Soc. 2014, 136, 6002–6010.

Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. Yi Liu and Daniel G. Nocera, J. Phys. Chem. C 2014, 118, 17060–17066.

Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña and Daniel G. Nocera, J. Am. Chem. Soc. 2014136, 17681–17688.

Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. D. Kwabena Bediako, Yogesh Surendranath and Daniel G. Nocera, J. Am. Chem. Soc. 2013, 135, 3662–3674.

Intermediate-Range Structure of Self-Assembled Cobalt-based Oxygen Evolving Catalysts. Christopher L. Farrow, D. Kwabena Bediako, Yogesh Surendranath, Daniel G. Nocera and Simon J. L. Billinge, J. Am. Chem. Soc. 2013, 135, 6403–6406.

Proton-Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst. D. Kwabena Bediako, Cyrille Costentin, Evan C. Jones, Daniel G. Nocera and Jean-Michel Savéant, J. Am. Chem. Soc. 2013, 135, 10492–10502.

Mechanism of Cobalt Self-Exchange Electron Transfer. Andrew M. Ullman and Daniel G. Nocera, J. Am. Chem. Soc. 2013, 135, 15053–15061.

The Nature of Lithium-Battery Materials Under Oxygen Evolution Reaction Conditions. Seung Woo Lee, Christopher Carlton, Marcel Risch, Yogesh Surendranath, Shuo Chen, Sho Furutsuki, Atsuo Yamada, Daniel G. Nocera and Yang Shao–Horn, J. Am. Chem. Soc. 2012, 134, 16959–16962.

Nucleation, Growth, and Repair of a Cobalt–Based Oxygen Evolving Catalyst. Yogesh Surendranath, Daniel A. Lutterman, Yi Liu and Daniel G. Nocera, J. Am. Chem. Soc. 2012, 134, 6326–6336.

Oxygen Evolution Reaction Chemistry of Oxide–Based Electrodes. Yogesh Surendranath and Daniel G. Nocera, Prog. Inorg. Chem. 2012, 57, 505–560.

Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst. D. Kwabena Bediako, Benedikt Lassalle–Kaiser, Yogesh Surendranath, Junko Yano, Vittal K. Yachandra and Daniel G. Nocera, J. Am. Chem. Soc. 2012, 134, 6801–6809.

Highly Active Cobalt Phosphate and Borate Based Oxygen Evolving Anodes Operating in Neutral and Natural Waters. Arthur S. Esswein, Yogesh Surendranath, Steven Y. Reece and Daniel G. Nocera, Energy Environ. Sci. 20114, 499–504.

Bidirectional and Unidirectional PCET in a Molecular Model of a Cobalt–Based Oxygen Evolving Catalyst. Mark D. Symes, Yogesh Surendranath, Daniel A. Lutterman and Daniel G. Nocera, J. Am. Chem. Soc. 2011, 133, 5174–5177.

Electronic Structure Description of a [Co(III)3Co(IV)O4] Cluster: A Model for the Paramagnetic Intermediate in Cobalt–Catalyzed Water Oxidation. J. Gregory McAlpin, Troy A. Stich, C. André Ohlin, Yogesh Surendranath, Daniel G. Nocera, William H. Casey and R. David Britt, J. Am. Chem. Soc. 2011, 133, 15444–15452.

Nickel–Borate Oxygen Evolving Catalyst that Functions under Benign Conditions. Mircea Dincă, Yogesh Surendranath and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 10337–10341.

EPR Evidence for Co(IV) Species Produced During Water Oxidation at Neutral pH. J. Gregory McAlpin, Yogesh Surendranath, Mircea Dincă, Troy A. Stitch, Sebastian Stoian, William H. Casey, Daniel G. Nocera and R. David Britt, J. Am. Chem. Soc. 2010, 132, 6882–6883.

Structure and Valency of a Cobalt–Phosphate Water Oxidation Catalyst Determined by in situ X–ray Spectroscopy. Matthew W. Kanan, Junko Yano, Yogesh Surendranath, Mircea Dincă, Vittal K. Yachandra and Daniel G. Nocera, J. Am. Chem. Soc. 2010, 132, 13692–136701.

Direct Formation of a Water Oxidation Catalyst from Cobalt Thin–Films. Elizabeth R. Young, Daniel G. Nocera and Vladimir Bulović, Energy Environ. Sci. 2010, 3, 1726–1728.

Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt–Phosphate Catalyst at Neutral pH. Yogesh Surendranath, Matthew W. Kanan and Daniel G. Nocera, J. Am. Chem. Soc. 2010, 132, 16501–16509.

Electrolyte–Dependent Electrosynthesis and Activity of Cobalt Based Water Oxidation Catalysts. Yogesh Surendranath, Mircea Dincǎ and Daniel G. Nocera, J. Am. Chem. Soc. 2009, 131, 2615–2620.

Cobalt–Phosphate Oxygen–Evolving Compound. Matthew Kanan, Yogesh Surendranath, and Daniel G. Nocera, Chem. Soc. Rev. 2009, 38, 109–114.

A Self–Healing Oxygen–Evolving Catalyst. Daniel A. Lutterman, Yogesh Surendranath and Daniel G. Nocera, J. Am. Chem. Soc. 2009, 131, 3838–3839.

Chemistry of Personalized Solar Energy. Daniel G. Nocera, Inorg. Chem. 2009, 48, 10001–10007.

Electronic Design Criteria for O–O Bond Formation via Metal-Oxo Complexes. Theodore A. Betley, Qin Wu, Troy Van Voorhis and Daniel G. Nocera, Inorg. Chem. 2008, 47, 1849–1861.

A Ligand Field Chemistry of Oxygen Generation by the Oxygen Evolving Complex and Synthetic Active Sites. Theodore A. Betley, Yogesh Surendranath, Montana V. Childress, Glen E. Alliger, Ross Fu, Christopher C. Cummins and Daniel G. Nocera, Phil. Trans. Royal Soc. B 2008, 363, 1293–1303.

In Situ Formation of an Oxygen–Evolving Catalyst in Neutral Water Containing Phosphate and Co2+”; Matthew W. Kanan and Daniel G. Nocera, Science 2008, 321, 1072–1075.