RNR
2.6-Å Resolution Cryo-EM Structure of a Class Ia Ribonucleotide Reductase Trapped with Mechanism-Based Inhibitor N3CDP. Dana E. Westmoreland, Patricia R. Feliciano, Gyunghoon Kang, Chang Cui, Albert Kim, JoAnne Stubbe, Daniel G. Nocera and Catherine L. Drennan, Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2417157121.
Protein Engineering a PhotoRNR Chimera Based on a Unifying Evolutionary Apparatus Among the Natural Classes of Ribonucleotide Reductase. David Y. Song, JoAnne Stubbe and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2317291121.
Disulfide Radical Anion as a Super-Reductant in Biology and Photoredox Chemistry. Qilei Zhu, Cyrille Costentin, JoAnne Stubbe and Daniel G. Nocera, Chem. Sci. 2023, 14, 6876 –6881.
Radical Transport Facilitated by a Proton Transfer Network at the Subunit Interface of Ribonucleotide Reductase. Chang Cui, David Y. Song, Catherine Drennan, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2023, 145, 5145–5154.
Radicals in Biology: Your Life is in Their Hands. JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2021, 143, 13463–13472.
Gated Proton Release During Radical Transfer at the Subunit Interface of Ribonucleotide Reductase. Chang Cui, Brandon L. Greene, Gyunghoon Kang, Catherine L. Drennan, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2021, 143, 176–183.
Subunit Interaction Dynamics of Class Ia Ribonucleotide Reductases: In Search of a Robust Assay. Kanchana Ravichandran, Lisa Olshansky, Daniel G. Nocera, and JoAnne Stubbe, Biochemistry 2020, 59, 1442–1453.
Ribonucleotide Reductases (RNRs): Structure, Chemistry, Metabolism Suggest New Therapeutic Targets. Brandon L. Greene, JoAnne Stubbe and Daniel G. Nocera, Annu. Rev. Biochem. 2020, 89, 45–75.
Selenocysteine Substitution into a Class I Ribonucleotide Reductase. Brandon L. Greene, JoAnne Stubbe and Daniel G. Nocera, Biochemistry 2019, 58, 5074–5084.
Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins to Study Redox-Active Tyrosines: E. coli Ribonucleotide Reductase as a Paradigm. Wankyu Lee, Müge Kasanmascheff, Michael Huynh, Anthony Quartararo, Cyrille Costentin, Isabel Bejenke, Marina Bennati, Cecilia Tommos, Daniel G. Nocera and JoAnne Stubbe, Biochemistry, 2018, 57, 3402–3415.
Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. Brandon L. Greene, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2018, 140, 15744–15752.
Basis of dATP Inhibition of RNRs. Brandon L. Greene, Daniel G. Nocera and JoAnne Stubbe, J. Biol. Chem. 2018, 293, 10413–10414.
Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in Escherichia coli Class Ia Ribonucleotide Reductase. Kanchana Ravichandran, Qinghui Lin, Ellen C. Minnihan, Kenichi Yokoyama, Daniel G. Nocera and JoAnne Stubbe, Biochemistry 2017, 56, 856–868.
Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. Kanchana Ravichandran, Allan Zong, Alexander T. Taguchi, Daniel G. Nocera, JoAnne Stubbe and Cecilia Tommos, J. Am. Chem. Soc. 2017, 139, 2994–3004.
Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. Brandon L. Greene, Alexander T. Taguchi, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2017, 139, 16657–16665.
Charge Transfer Dynamics at the α/β Subunit Interface of Photochemical Ribonucleotide Reductase. Lisa Olshansky, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2016, 138, 1196–1205.
Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase. Lisa Olshansky, Brandon L. Greene, Chelsea Finkbeiner, Bon Jun Koo, JoAnne Stubbe and Daniel G. Nocera, Biochemistry 2016, 55, 3234–3240.
A >200 meV Uphill Thermodynamic Landscape for Radical Transport in E. coli Ribonucleotide Reductase Determined using Fluorotyrosine-Substituted Enzymes. Kanchana Ravichandran, Alexander T. Taguchi, Yifeng Wei, Cecilia Tommos, Daniel G. Nocera and JoAnne Stubbe, J. Am. Chem. Soc. 2016, 138, 13706–13716.
Direct Interfacial Y731 Oxidation in α2 by a Photoβ2 Subunit of E. coli Class Ia Ribonucleotide Reductase. David Y. Song, Arturo A. Pizano, Patrick G. Holder, JoAnne Stubbe and Daniel G. Nocera, Chem. Sci. 2015, 6, 4519–4524.
Modulation of Phenol Oxidation in Cofacial Dyads. Bon Jun Koo, Michael Huynh, Robert L. Halbach, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2015, 137, 11860–11863.
Reverse Electron Transfer Completes the Catalytic Cycle in a 2,3,5-Trifluorotyrosine-Substituted Ribonucleotide Reductase. Kanchana Ravichandran, Ellen Minnihan, Yifeng Wei, Daniel G. Nocera and JoAnne Stubbe, J. Am. Chem. Soc. 2015, 137, 14387–14395.
Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in the Ribonucleotide Reductase. Lisa Olshansky, Arturo A. Pizano, Yifeng Wei, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2014, 136, 16210–16216.
Generation of a Stable, Aminotyrosyl Radical–Induced α2β2 Complex of E. coli Class Ia Ribonucleotide Reductase. Ellen C. Minnihan, Nozomi Ando, Edward J. Brignole, Lisa Olshansky, Johnathan Chittuluru, Francisco J Asturias, Catherine L. Drennan, Daniel G. Nocera and JoAnne Stubbe, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3835–3840.
Reversible, Long–Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase. Ellen C. Minnihan, Daniel G. Nocera and JoAnne Stubbe, Acc. Chem. Res. 2013, 46, 2524–2535.
Modulation of Y356 Photooxidation in E. coli Class Ia Ribonucleotide Reductase by Y731 Across the α2:β2 Interface. Arturo A. Pizano, Lisa Olshansky, Patrick G. Holder, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2013, 135, 13250–13253.
Deciphering Radical Transport in the Large Subunit of Class I Ribonucleotide Reductase. Patrick G. Holder, Arturo A. Pizano, Bryce L. Anderson, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2012, 134, 1172–1180.
Photo–Ribonucleotide Reductase β2 by Selective Cysteine Labeling with a Radical Phototrigger. Arturo A. Pizano, Daniel A. Lutterman, Patrick G. Holder, Thomas S. Teets, JoAnne Stubbe and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 39–43.
Photochemical Tyrosine Oxidation with a Hydrogen–Bonded Proton Acceptor by Bidirectional Proton–Coupled Electron Transfer. Arturo A. Pizano, Jay L. Yang and Daniel G. Nocera, Chem. Sci. 2012, 3, 2457–2461.
Re(bpy)CO3CN as a Probe of Conformational Flexibility in a Photochemical Ribonucleotide Reductase. Steven Y. Reece, Daniel A. Lutterman, Mohammad R. Seyedsayamdost, JoAnne Stubbe and Daniel G. Nocera, Biochemistry 2009, 48, 5832–5838.
Direct Observation of a Transient Tyrosine Radical Competent for Initiating Turnover in a Photochemical Ribonucleotide Reductase. Steven Y. Reece, Mohammad R. Seyedsayamdost, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2007, 129, 13828–13830.
Photoactive Peptides for Light Initiated Tyrosyl Radical Generation and Transport into Ribonucleotide Reductase. Steven Y. Reece, Mohammad R. Seyedsayamdost, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2007, 129, 8500–8509.
Proton–Coupled Electron Transfer of Tyrosine Oxidation: Buffer Dependence and Parallel Mechanisms. Tania Irebo, Steven Y. Reece, Martin Sjödin, Daniel G. Nocera and Leif Hammarström, J. Am. Chem. Soc. 2007, 129, 15462–15464.
pH Rate Profiles of FnY356–R2s (n = 2, 3, 4) in Escherichia coli Ribonucleotide Reductase: Evidence that Y356 is a Redox Active Amino Acid Along the Radical Propagation Pathway. Mohammad R. Seyedsayamdost, Cyril S. Yee, Steven Y. Reece, Daniel G. Nocera and JoAnne Stubbe, J. Am. Chem. Soc. 2006, 128, 1562–1568.
Mono, Di, Tri, and Tetra Substituted Fluorotyrosines: New Probes for Enzymes that use Tyrosyl Radicals in Catalysis. Mohammad R. Seyedsayamdost, Steven Y. Reece, Daniel G. Nocera and JoAnne Stubbe, J. Am. Chem. Soc. 2006, 128, 1569–1579.
A Simple and Versatile Method for Alkene Epoxidation using Aqueous Hydrogen Peroxide and Manganese Salophen Complexes as Catalysts. Shih–Yuan Liu and Daniel G. Nocera, Tetrahedron Lett. 2006, 47, 1923–1926.
Electron Transfer Reactions of Fluorotyrosyl Radicals. Steven Y. Reece, Mohammad R. Seyedsayamdost, JoAnne Stubbe and Daniel G. Nocera, J. Am. Chem. Soc. 2006, 128, 13654–13655.
Direct Tyrosine Oxidation Using the MLCT Excited States of Rhenium Polypyridyl Complexes. Steven Y. Reece and Daniel G. Nocera, J. Am. Chem. Soc. 2005, 127, 9448–9458.
pH Dependence on Charge Transfer between Tryptophan and Tyrosine in Model Dipeptides. Steven Y. Reece, JoAnne Stubbe and Daniel G. Nocera, Biophys. Biochim. Acta 2005, 1706, 232–238.
Turning On Ribonucleotide Reductase by Light–Initiated Amino Acid Radical Generation. Michelle C.Y. Chang, Cyril S. Yee, JoAnne Stubbe and Daniel G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6882–6887.
Site–Specific Replacement of a Conserved Tyrosine in Ribonucleotide Reductase with an Aniline Amino Acid: A Mechanistic Probe for a Redox–Active Tyrosine. Michelle C.Y. Chang, Cyril S. Yee, Daniel G. Nocera and JoAnne Stubbe, J. Am. Chem. Soc. 2004, 126, 16702–16703.
Radical Initiation in the Class I Ribonucleotide Reductase: Long Range Proton Coupled Electron Transfer? JoAnne Stubbe, Daniel G. Nocera, Cyril S. Yee and Michelle C. Y. Chang, Chem. Rev. 2003, 103, 2167–2201.
2,3–Difluorotyrosine on R2 of Ribonucleotide Reductase: A Probe of Long–Range Proton–Coupled Electron Transfer. Cyril S. Yee, Michelle C. Y. Chang, Jie Ge, Daniel G. Nocera and JoAnne Stubbe, J. Am. Chem. Soc. 2003, 125, 10506–10507.
Generation of the R2 Subunit of Ribonucleotide Reductase by Intein Chemistry: Insertion of 3–Nitrotyrosine at residue 356 as a Probe of the Radical Initiation Process. Cyril S. Yee, Mohammad R. Seyedsayamdost, Michelle C. Y. Chang, Daniel G. Nocera and JoAnne Stubbe, Biochemistry 2003, 42, 14541–14552.
Nanosecond Generation of Tyrosyl Radicals via Laser–Initiated Decaging of Oxalate–Modified Amino Acids. Michelle C. Y. Chang, Scott E. Miller, Scott D. Carpenter, JoAnne Stubbe and Daniel G. Nocera, J. Org. Chem. 2002, 67, 6820–6822.