Sensing: Biology, Fluid Mechanics, Materials

BioLOGY (Other than RNR)

Determination of Initial Rates of Lipopolysaccharide Transport. Matthew Nava, Sebastian Rowe, Rebecca Taylor, Daniel Kahne and Daniel G. Nocera, Biochemistry 2024, 63, 2440–2448.

Gold Corroles as Near-IR Phosphors for Oxygen Sensing. Christopher M. Lemon, David C. Powers, Penelope J. Brothers and Daniel G. Nocera, Inorg. Chem. 2017, 56, 10991–10997.

Comparison of Self-Assembled and Micelle Encapsulated QD Chemosensor Constructs for Biological Sensing. Christopher M. Lemon and Daniel G. Nocera, Faraday Discuss. 2015, 185, 249–266.

Micelle-Encapsulated Quantum Dot-­­­Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors. Christopher M. Lemon, Elizabeth Karnas, Xiaoxing Han, Oliver T. Bruns, T. J. Kempa, Dai Fukumura, Moungi G. Bawendi, Rakesh K. Jain, Dan G. Duda and Daniel G. Nocera, J. Am. Chem. Soc. 2015, 137, 9832–9842.

Metabolic Tumor Profiling with pH, Oxygen, and Glucose Chemosensors on a Quantum Dot Scaffold. Christopher M. Lemon, Peter N. Curtin, Rebecca, C. Somers, Andrew B. Greytak, Ryan M. Lanning, Rakesh K. Jain, Moungi G. Bawendi and Daniel G. Nocera, Inorg. Chem. 2014, 53, 1900–1915.

Conformational Control of Energy Transfer: A New Mechanism for Biocompatible Nanocrystal–Based Sensors. Euan R. Kay, Jungmin Lee, Daniel G. Nocera and Moungi G. Bawendi, Angew. Chem. Int. Ed. 2013, 52, 1165–1169.

Two-Photon Oxygen Sensing with Quantum Dot–Porphyrin Conjugates. Christopher M. Lemon, Elizabeth Karnas, Moungi G. Bawendi and Daniel G. Nocera, Inorg. Chem. 2013, 52, 10394–10406.

Alternating Layer Addition Approach to CdSe/CdS Core/Shell Quantum Dots with Near-Unity Quantum Yield and High On-Time Fractions. Andrew B. Greytak, Peter M. Allen, Wenhao Liu, Jing Zhao, Elizabeth R. Young, Zoran Popović, Brian Walker, Moungi G. Bawendi and Daniel G. Nocera, Chem. Sci. 2012, 3, 2028–2034.

A Nanocrystal–Based Ratiometric pH Sensor for Biological Applications. Rebecca C. Somers, Ryan Lanning, Preston T. Snee, Andrew B. Greytak, Rakesh Jain, Moungi G. Bawendi and Daniel G. Nocera, Chem. Sci. 2012, 3, 2980–2985.

Energy Transfer of CdSe/ZnS Nanocrystals Encapsulated with Rhodamine–Dye Functionalized Poly(acrylic acid). Rebecca C. Somers, Preston T. Snee, Moungi G. Bawendi and Daniel G. Nocera, J. Photochem. Photobiol. A 2012, 248, 24–29.

Compact Biocompatible Quantum Dots via RAFT–Mediated Synthesis of Imidazole–Based Random Copolymer Ligand. Wenhao Liu, Andrew B. Greytak, Jungmin Lee, Jongnam Park, Cliff R. Wong, Lisa F. Marshall, Wen Jiang, Alice Y. Ting, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain, and Moungi G. Bawendi J. Am. Chem. Soc. 2010, 132, 472–483.

Ruthenium–Porphyrin Protein Scaffolds for Sensing of O2. Michael B. Winter, Emily J. McLaurin, Steven Y. Reece, Charles Olea, Jr., Daniel G. Nocera and Michael A. Marletta, J. Am. Chem. Soc. 2010, 132, 5582–5583.

A Nanoparticle Size Series for in vivo Imaging. Zoran Popović, Wenhao Liu, Vikash P. Chauhan, Jungmin Lee, Cliff Wong, Andrew B. Greytak, Numpon Insin, Daniel G. Nocera, Dai Fukumura, Rakesh K. Jain and Moungi G. Bawendi, Angew. Chem. Int. Ed. 2010, 49, 8649–8652.

Two–Photon Absorbing Nanocrystal Sensors for Ratiometric Detection of Oxygen. Emily J. McLaurin, Andrew B. Greytak, Moungi G. Bawendi and Daniel G. Nocera, J. Am. Chem. Soc.  2009, 131, 12994–13001.

Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. Wenhao Liu, Mark Howarth, Andrew B. Greytak, Daniel G. Nocera, Alice Y. Ting and Moungi G. Bawendi. J. Am. Chem. Soc. 2008, 130, 1274–1284.

Nanocrystals as Sensors. Rebecca C. Somers, Moungi G. Bawendi M and Daniel G. Green Chem. 2007, 17, T37.

CdSe Nanocrystal Based Chem–/Bio–Sensors. Rebecca C. Somers, Moungi G. Bawendi and Daniel G. Nocera, Chem. Soc. Rev. 2007, 36, 579–591.

A Solvent Stable Nanocrystal–Silica Composite Laser. Yinthai Chan, Preston T. Snee, Jean–Michel Caruge, Brian K. Yen, Gautham Nair, Daniel G. Nocera and Moungi G. Bawendi, J. Am. Chem. Soc. 2006, 128, 3146–3147.

A Ratiometric CdSe/ZnS Nanocrystal pH Sensor. Preston T. Snee, Rebecca C. Somers, Gautham Nair, John P. Zimmer, Moungi G. Bawendi and Daniel G. Nocera, J. Am. Chem. Soc. 2006, 128, 13320–13321.

Non–linear Transduction Strategies for Chem–/Bio– Sensing on the Nanoscale. Aetna W. Wun, Preston T. Snee, YinThai Chan, Moungi G. Bawendi and Daniel G. Nocera, J. Mater. Chem. 2005, 15, 2697–2706.

Fluid Mechanics

Molecular Tagging Velocimetry and Other Novel Applications of a New Phosphorescent Supramolecule. Charles P. Gendrich, Manoochehr M. Koochesfahani and Daniel G. Nocera, Exp. Fluids 1997, 23, 361–372.

Molecular Tagging Velocimetry. Manoochehr M. Koochesfahani and Daniel G. Nocera, in Handbook of Experimental Fluid Mechanics, J. Foss, C. Tropea and A. Yarin, Eds., Springer–Verlag: New York, 2007, Ch 5.4.

Experimental Investigations of Micro–Scale Flow and Heat Transfer Phenomena by Using Molecular Tagging Techniques. Hui Hu, Zheyan Jin, Daniel G. Nocera, Chee Lum, Manoochehr Koochesfahani, Meas. Sci. Technol. 2010, 21, 085401.

Experimental Evidence of Diffusion–Induced Bias in Near–Wall Velocimetry using Quantum Dot Measurements. Shahram Pouya1, Manoochehr Koochesfahani, Andrew Greytak, Moungi Bawendi and Daniel G. Nocera, Exps. Fluids 2008, 44, 1035–1038.

Near–Surface Velocimetry Using Quantum Dots (QDs). Manoochehr Koochesfahani, Shahram Pouya, Preston Snee, Moungi Bawendi and Daniel Nocera, Proc. 6th Int. Symp. PIV 2005, KN03, Pasadena, CA.

Single Quantum Dot (QD) Imaging of Fluid Flow Near Surfaces. Shahram Pouya, Manoochehr Koochesfahani, Preston Snee, Moungi Bawendi and Daniel Nocera, Exp. Fluids 2005, 39, 784–786.

Quantum Dot Optical Temperature Probes. Glen W. Walker, Vikram C. Sundar, Christina M. Rudzinski, Moungi G. Bawendi and Daniel G. Nocera, Appl. Phys. Lett. 2003, 83, 3555–3557.

A Supramolecular Microfluidic Optical Chemosensor. Christina M. Rudzinski, Albert M. Young and Daniel G. Nocera, J. Am. Chem. Soc. 2002, 124, 1723–1727.

Buckets of Light. Christina M. Rudzinski and Daniel G. Nocera, in Optical Sensors and Switches, V. Ramamurthy and K. S. Schanze, Eds.; Molecular and Supramolecular Photochemistry, vol. 7, Marcel Dekker: New York, 2001, pp 1–91.

Molecular Tagging Velocimetry Maps Fluid Flows. Manoochehr M. Koochesfahani and Daniel G. Nocera, Laser Focus 2001, 37, 103–108.

Investigation of Advanced Luminescent Probes and Paint Architectures. Gary A. Dale, Larry P. Goss, Neal A. Watkins and Daniel G. Nocera, Proc. Int. Instr. Symp. 2001, 47, 10–25.

Molecular Tagging Diagnostics for the Study of Kinematics and Mixing in Liquid Phase Flows. Manoochehr M. Koochesfahani, Richard K. Cohn, Charles P. Gendrich and Daniel G. Nocera in Developments in Laser Techniques in Fluid Mechanics, R. J. Adrian, D. F. Durao, F. Durst, M. V. Heitor, M. Maeda, J. Whitelaw, Eds., Springer–Verlag, Berlin, 1997, p 125.

Lanthanide–Ion Modified Cyclodextrin Supramolecules. Christina M. Rudzinski, Wanda K. Hartmann and Daniel G. Nocera, Coord. Chem. Rev. 1998, 171, 115–123.

Mechanism for the Sensitized Luminescence of a Lanthanide–Ion Macrocycle Appended to a Cyclodextrin. Christina M. Rudzinski, Wanda K. Hartmann and Daniel G. Nocera, J. Phys. Chem. 1998, 102, 7442–7446.

Chemosensing of Monocyclic and Bicyclic Aromatic Hydrocarbons by Supramolecular Active Sites. Wanda K. Hartmann, Mark A. Mortellaro, Zoe Pikramenou and Daniel G. Nocera in Chemosensors of Ion and Molecule Recognition; NATO ASI Series, Series C: Vol. 492, J.–P Desvergne and A. W. Czarnik, Eds, Kluwer Academic; Dordrecht, 1997; pp 159–176.

Substrate Induced Phosphorescence from Cyclodextrin•Lumophore Host–Guest Complexes. Wanda K. Hartmann, Mike H. B. Gray, Adrian Ponce and Daniel G. Nocera, Inorg. Chim. Acta (Harry B. Gray issue) 1996, 243, 239–248.

Not Just Another Pretty Shape. Daniel G. Nocera, New Scientist 1996, 149, 24–27.

A Turn–on for Optical Sensing. Mark A. Mortellaro and Daniel G. Nocera, ChemTech 1996, 26, 17–23.

Exciplex Fluorescence Visualization Systems for Pre–Combustion Diagnosis of an Automotive Gasoline Engine. JongUk Kim, Harold J. Schock, Daniel G. Nocera, Brage Golding and Phillip Keller, Adv. Eng. Comb. Flow Diag. 1996, SAE960826, 285–301.

Regioisomeric Effects on the Excited State Processes of a Cyclodextrin Modified with a Lumophore. Mark A. Mortellaro, Wanda K. Hartmann and Daniel G. Nocera, Angew. Chem. Int. Ed. Engl. 1996, 35, 1945–1946.

A Supramolecular Chemosensor for Aromatic Hydrocarbons. Mark A. Mortellaro and Daniel G. Nocera, J. Am. Chem. Soc. 1996, 118, 7414–7415.

Molecular Tagging Diagnostics for the Study of Kinematics and Mixing in Liquid Phase Flows. M. M. Koochesfahani, R. K. Cohn, C. P. Gendrich, and D. G. Nocera in International Symposium on Applications of Laser Techniques to Fluid Mechanics, National Technical Information Service: Springfield, VA, 1996, Ch 1.2, 1–12.

Luminescence from Supramolecules Triggered by the Molecular Recognition of Substrates. Zoe Pikramenou, Jeong–a Yu, Ronald B. Lessard, Adrian Ponce, Peter A. Wong and Daniel G. Nocera, Coord. Chem. Rev. 1994, 132, 181–194.

Intense Phosphorescence Triggered by Alcohols upon Formation of a Cyclodextrin Complex. Adrian Ponce, Peter A. Wong, Jeremy J. Way and Daniel G. Nocera, J. Phys. Chem. 1993, 97, 11137–11142.

Intramolecular Energy Transfer within a Cyclodextrin Supramolecular Assembly. Zoe Pikramenou and Daniel G. Nocera, Proc. Sixth Int. Symp. Cyclodextrins, Editions de Santé, Paris, France, 1993, pp 259–262.

Quantitative Multipoint Measurement and Visualization of Dense Solid–Liquid Flows by Using Laser Induced Photochemical Anemometry (LIPA). Robert E. Falco and Daniel G. Nocera in Particulate Two Phase Flows, M. C. Roco, Ed., Butterworth–Heinemann: Boston, 1993; Ch 3, pp 59–126.

Synthesis of a Cradle Cyclodextrin. Zoe Pikramenou and Daniel G. Nocera, Tetrahedron Lett. 1993, 34, 3531–3534.

Luminescent Supramolecular Architectures: A Cyclodextrin Modified with an Europium(III) Crown Swing. Zoe Pikramenou and Daniel G. Nocera, Inorg. Chem. 1992, 31, 532–536.

A Study of Flow Properties of Wet–Solids Using Laser Induced Photochemical Anemometry (LIPA). Robert E. Falco and Daniel G. Nocera, Liquid–Solid Flows 1991, 118, 143–144.

Direct Observation of Intramolecular Energy Transfer from a β–Diketonate to Terbium(III) Ion Encapsulated in a Cryptand. Jeong–a Yu, Ronald B. Lessard, Lawrence E. Bowman and Daniel G. Nocera, Chem. Phys. Lett. 1991, 187, 263–268.

Materials

Electrochemical Deposition of Conformal and Functional Layers on High Aspect Ratio Silicon Micro/Nanowires. Tuncay Ozel, Benjamin A. Zhang, Ruixuan Gao, Robert W. Day, Charles M. Lieber and Daniel G. Nocera, Nano Lett. 2017, 17, 4502–4507.

Facet-Selective Growth on Nanowires Yields Multi-Component Nanostructures and Photonic Devices. Thomas J. Kempa, Sun-Kyung Kim, Robert W. Day, Hong-Gyu Park, Daniel G. Nocera and Charles M. Lieber, J. Am. Chem. Soc. 2013, 135, 18354–18357.

Exciton–Exciton Annihilation in Organic Polariton Microcavities. G. M. Akselrod, Y. R. Tischler, Elizabeth R. Young, Daniel G. Nocera, and Vladimir Bulović, Phys. Rev. B 2010, 82, 113106.

Whispering Gallery Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite. Preston Snee, YinThai Chan, Daniel G. Nocera and Moungi G. Bawendi, Adv. Mater. 2005, 17, 1131–1136.

Blue Semiconductor Nanocrystal Laser. YinThai Chan, Jonathan S. Steckel, Preston T. Snee, Jean–Michel Caruge, Justin M. Hodgkiss, Daniel G. Nocera and Moungi G. Bawendi, Appl. Phys. Lett. 2005, 86, 073102.

A Low–Threshold, High–Efficiency Microfluidic Waveguide Laser. Dmitri V. Vezenov, Brian T. Mayers, Richard Conroy, George M. Whitesides, Preston Snee, Yinthai Chan, Daniel G. Nocera and Moungi G. Bawendi, J. Am. Chem. Soc. 2005, 127, 8952–8953.

Realization of a Salt Bridge-Free Microfluidic Reference Electrode. E. Victoria Dydek, Montana V. Petersen, Daniel G. Nocera and Klavs F. Jensen, Lab Chip 201212, 1431–1433.

Electrode Placement and Fluid Flow Rates in Microfluidic Electrochemical Devices. E. Victoria Dydek, Montana V. Petersen, Daniel G. Nocera and Klavs F. Jensen, J. Electrochem. Soc. 2012, 159, H853–H856.

Fiber Optic Oxygen Sensor using Molybdenum Chloride Cluster Luminescence. Ruby N. Ghosh, Gregory L. Baker, Cory Ruud and Daniel G. Nocera, Appl. Phys. Lett. 1999, 75, 2885–2887.

Fiber Optic Oxygen Sensing via Luminescence from Molybdenum Chloride Clusters. Ruby N. Ghosh, Gregory L. Baker, Cory Ruud and Daniel G. Nocera, OSA Tech. Digest Ser. 1997, 16, 366.

Fiber Optic Oxygen Sensor using Metal–Halide Cluster Luminescence. Ruby N. Ghosh, Gregory L. Baker, Cory Ruud and Daniel G. Nocera, Proc. SPIE Int. Soc. Opt. Eng. 1999, 3860, 164–170.

Light Harvesting Molecular Assemblies in the Design of Highly Luminescent Sol–Gel Derived Glasses. Joel I. Dulebohn, Béatrice Van Vlierberge, Kris A. Berglund, Ronald B. Lessard, Jeong–a Yu and Daniel G. Nocera, Mater. Res. Soc. Proc. 1990, 180, 733–740.           

Highly Emissive Lanthanide Compounds in Sol–Gel Derived Materials. Ronald B. Lessard, Kris A. Berglund, and Daniel G. Nocera, Mater. Res. Soc. Proc. 1989, 155, 119–125.

The Formation of Molecular Composites by a Modified Sol–Gel Process. Ronald B. Lessard, Mary M. Wallace, W. Anthony Oertling, Chi K. Chang, Kris A. Berglund and Daniel G. Nocera, Mater. Res. Soc. Proc. 1989, 155, 109–117.

Luminescent Oxide Gels. Mark D. Newsham, Michael Cerretta, Kris A. Berglund and Daniel G. Nocera, Mater. Res. Soc. Proc. 1988, 121, 627–630.